Блокинг-генератор, принцип работы.
Как оказалось в сети очень мало информации по блокинг-генераторам и их схемам, с объяснениями как «оно» работает и почему. Большая часть всего того, что можно найти — это перепосты разрозненной информации с различных источников с ошибками и без, и чаще всего нигде толком не объясняется как работает эта простая схема. Таким образом эта статья и видео это попытка заполнить пробелы и исправить ошибки которые могут возникнуть при изучении схемы блокинг-генератора.
Схема выглядит вот так:
Как это работает:
Блокинг-генератор — это однокаскадный генератор прямоугольных импульсов.
После подачи питания, транзистор находится в закрытом состоянии. Конденсатор С начинает заряжается через резистор R и первичную обмотку трансформатора.
По мере заряда конденсатора С увеличивается напряжение на базе транзистора T1, что приводит к постепенному открытию транзистора и возрастанию коллекторного тока, в результате транзистор T1 откроется. И ток потечет через вторичную обмотку трансформатора Tr1 и открытый транзистор T1:
В момент прохождения тока через вторичную обмотку трансформатора Tr1, в первичной обмотке будет наведена ЭДС и этот ток начнет разряжать конденсатор С1:
По мере разряда конденсатора С1, на базе транзистора Т1 падает открывающее его напряжение, и транзистор начинает закрываться. И схема переходит в первоначальное состояние и весь процесс повторяется до бесконечности, до тех пор пока есть питание и/или исправны элементы схемы.
Для более устойчивой работы схемы необходимо добавить 2 элемента, диод и резистор. Диод D1 защищает транзистор T1 от обратного напряжения и выхода его из строя самоиндукцией трансформатора Tr1 в момент заряда конденсатора С1. Резистор R2 ограничивает ток базы транзистора Т1 когда конденсатор С1 заряжен.
И остался последний вопрос: использование этой схемы, чаще всего эту схему используют как повышающий преобразователь или генератор. Генератором эта схема может быть не только тогда когда нет серьезных требований к форме сигнала, к примеру очень часто можно встретить блокинг-генератор, как задающий в импульсном БП. И в том и в другом случае, к трансформатору нужно добавить еще одну обмотку, с которой и будет сниматься напряжение на нагрузку.
Есть схемы в которых не используется дополнительная обмотка трансформатора для нагрузки, но такие схемы менее устойчивы в работе — устойчивость сильно зависит от величины питающего напряжения, но они тоже отлично работают. Вот один из примеров, который я использовал в одной из своих поделок:
Схема эта очень интересна тем, что тут не используется конденсатор вообще, а вместо него работает запасенная в трансформаторе энергия. Светодиод тут кроме нагрузки является еще и демпферным диодом.
Расчеты:
Для расчёта блокинг-генератора обычно задаются следующими выходными характеристиками схемы: амплитуда импульсов Um, период прохождения импульсов Т, длительность импульса τi, сопротивление нагрузки RH.
Для примера приведен расчёт для простейшей схемы, на основе которой можно создать импульсный блок питания.
Для примера:
— частота прохождения импульсов F = 50 кГц,
— скважность импульсов Q = 0,3,
— амплитуда выходных импульсов Um = 5 В,
— сопротивление нагрузки RH = 25 Ом,
— напряжение питания схемы ЕК = 310 В (выпрямленное сетевое напряжение).
1.Выбираем транзистор по следующим параметрам:
— максимально допустимое напряжение UCBmax,
— максимально допустимый ток коллектора ICmax
— предельная частота fh21e.
где nH — коэффициент трансформации из коллекторной обмотки в обмотку нагрузки.
Для примера: IC = 0,02 А
Данным параметрам удовлетворяет транзистор MJE13001 со следующими характеристиками:
тип транзистора: NPN;
UCBmax = 600 В;
UBЕmax = 7 В;
ICmax = 0,2 А;
ICBO = 10 мкА;
fh21e = 8 МГц;
h21e = 5…30;
rb ≈ 200 Ом.
2.Определим величину сопротивления R2
R2 = (2…3)rB=(2….3)200=400-600 Ом
Отсюда R2 390 Ом
3.Рассчитаем параметры импульсного трансформатора. Коэффициент трансформации для выходной обмотки nH
Коэффициент трансформации для обмотки в цепи базы nB
где Ub – напряжение на базе транзистора
Выберем UB = 5 В. Тогда
Индуктивность коллекторной обмотки трансформатора
где ti – длительность импульса;
R’H – приведённое сопротивление нагрузки;
r’b – приведённое к коллекторной нагрузке сопротивление базы.
Определим длительность импульса и приведённые сопротивления
где rb – внутреннее объемное сопротивление базы. Тогда
Тогда индуктивность первичной обмотки будет равна
4.Определим величину сопротивления R1 и емкость конденсатора С1. Ёмкость конденсатора С1 определится из следующего условия
Примем С1 = 12 нФ
Сопротивление резистора R1
Примем R1 = 62 кОм.
5.В коллекторную цепь транзистора необходимо включать демпфирующую цепочку. Она позволяет ограничить всплески импульсов на трансформаторе, вследствие чего уменьшаются импульсные помехи и вероятность пробоя транзистора. В данном случае применена простейшая демпфирующая цепь в виде диода VD1, который должен удовлетворять следующим условиям
Данным параметрам удовлетворяет диод типа 1N4004.
Во всех расчетах выше учувствует именно резистор R1, а не R2!
Вариантов применения и вариаций схем блокинг генератора конечно очень(!) много.
Пример применения блокинг-генератора на практике:
Хорошее объяснение!